
Implementing Smart Card Authentication with ASP.NET

Page 1 of 25 Copyright © 2007 - J. Montgomery

Implementing Smart Card Authentication with ASP.NET
In my previous article last October on Smart Card Authentication with ASP.NET, I introduced the
topic of using Smart Cards to handle Authentication and Authorization with ASP.NET for non-
Active Directory users. This is a more complete follow-up article now that I have done a bit more
research into the topic and now have a full working implementation that I’m happy with.

In this implementation, the IIS Web Server is handling the basics of the Smart Card
authentication, much like Windows authentication works.

The goals of this project are to provide the following:
1. A tight interface to strongly typed objects that are Smart Card aware
2. Allow these typed objects to be available to the entire web application on every page request
3. Provide Role based authorization via the smart card through groups. This will require a

mechanism to associate a User’s smart card with an associated group

Some Caveats
If you do not need to apply role authorization through Principals then this methodology may be
more then you need. If specific requirements stipulate you need information on the Smart
Card/Client Certificate to display on the screen or track the Certificate Subject, simply using IIS
for Authentication and the HttpCertificate property of the Context object
(Context.Request.ClientCertificate) will be sufficient.

If you plan on doing Client Certificate Mapping to User Accounts on the OS or Domain, this
methodology is not necessary. If the reason is not immediately obvious to you, the short answer
is that when using Certificate to AD Account mapping, IIS is taking the smart card and mapping it
to a Windows Account – so in the end, IIS is using Windows Authentication. Once you have
mapped an account from a smart card to a windows account, you can use Windows
Authentication in the Web.Config and the WindowsPrincipal object for Authorization based on
Windows Groups.

Background
In my original implementation of Smart Card authentication and authorization with ASP.NET, I
used Forms Authentication in combination with the Request.ClientCertificate to automatically
authentication the user. Instead of having the user enter their credentials on the Forms Login
Page, this methodology still redirected them to the forms login page and the code behind
automatically resolved the Request.ClientCertificate and authenticated the Client Certificate by
resolving their account in the database. Next the code created the FormsAuthenticationTicket
(which included the roles) as a cookie, and then redirected them back to the original page they
were requesting. Finally, the Principal was attached to the Context.User object in
Application_AuthenticateRequest event of the Global.asax. For implementation details, see: How
To: Create GenericPrincipal Objects with Forms Authentication and How To: Use Forms
Authentication with SQL Server 2000 – I combined and modified these methodologies for use
with the Smart Card.

After having used Forms Authentication in the original version, here are some “lessons learned” I
will share. The Forms Authentication approach ended up not being a very good approach for
several reasons:
1. Forms Authentication relies on page redirects to handle authentication via a Login page. This

adds unnecessary overhead since there is no reason for the browser to jump around via
redirects to retrieve the Request.ClientCertificate. The certificate is immediately available
once the user is authenticated via IIS.

2. Forms Authentication relies on encrypted cookies to store the users’ authentication data in
the FormsAuthenticationTicket.UserData property (which was the users’ roles are typically

Implementing Smart Card Authentication with ASP.NET

Page 2 of 25 Copyright © 2007 - J. Montgomery

stored). Since we already have the Request.ClientCertificate, using cookies for authentication
adds additional complexity to the code.

3. Encrypting and decrypting the FormsAuthenticationTicket adds extra processing overhead.
4. It does not make sense to push data down to the client in a cookie since we’ve received all

authentication information we need already. From a threats/countermeasures perspective,
since the cookie comes from the client, we must treat it suspiciously and perform extra
validation on the User Data to make sure it was not tampered with. Yes, even though its
3DES encrypted MAC is enabled –the threat must be considered where one is able to crack
the 3DES key, however unlikely, and decrypt the FormsAuthenticationTicket. If we put
nothing on the client, this threat will never be realized.

5. Forms Authentication adds unnecessary authentication complexity to the code in Global.asax
as well as code in the Forms Login page.

6. The Forms authentication mechanism caches the login for duration and has ‘logout’
functionality via cookie expiration. Smart Cards in ASP.NET do not ever ‘log out’, they
timeout. Since IIS handles the re-authentication transparently to ASP.NET, the .NET
authentication code need not handle timeout and re-authentication.

A more appropriate way of handling the Smart Card authentication and authorization is using a
feature of ASP.NET called HTTP Modules.

HTTP Pipelines
ASP.NET has built in a nice way to insert code into the HTTP Pipeline. This is an ideal place to
insert code to handle new types of Authentication (as well as many other things). This will not be
any shock to those already familiar with the ASP.NET HTTP pipeline – the other authentication
models in ASP.NET (Forms, Windows, and Passport) are implemented in the HTTP pipeline
using HTTP Modules. Session management and URL Authorization are also handled with HTTP
Modules. If you are not familiar with HTTP Modules and the HTTP Pipeline in ASP.NET see
Appendix A for more reading on the topic.

The concept behind the HTTP Pipeline is simple. A web request comes in from IIS. If the page is
mapped to run through the ASP.NET engine, IIS passes the request off to ASP.NET and then
ASP.NET moves the request through all the HTTP Modules installed in the machine.config as
well as the web.config. Here is a picture demonstrating the pipeline:

Figure 1 – HTTP Pipeline in ASP.NET

To resolve programmatically the HTTP Modules loaded currently in ASP.NET, drop the following
code in the _Load event of any ASP.NET page:

Implementing Smart Card Authentication with ASP.NET

Page 3 of 25 Copyright © 2007 - J. Montgomery

C#
private void Page_Load(object sender, System.EventArgs e)
{
 Response.Write("Loaded HTTP Modules");
 Response.Write("
");

 foreach (string httpModule in this.Context.ApplicationInstance.Modules)
 {
 Response.Write(httpModule);
 Response.Write("
");
 }
}

VB.Net
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles MyBase.Load

 Response.Write ("Loaded HTTP Modules")
 Response.Write ("
")

 For Each httpModule As String In Me.Context.ApplicationInstance.Modules
 Response.Write(httpModule)
 Response.Write("
")
 Next

End Sub

The output will look something like this:

Figure 2 – ASPX page lists the currently running ASP.NET modules.

Notice that all of the HTTP Modules that come with ASP.NET are loaded even when a particular
feature is not being used (i.e. Session Management, Forms Authentication). While loaded, they
do not do any work on the Request unless the web.config file is used to enable it.

Implementing Smart Card Authentication with ASP.NET

Page 4 of 25 Copyright © 2007 - J. Montgomery

Here is an outline of the steps this article will cover:
1. How to Build a Smart Card HTTP Module
2. Configure an ASP.NET application to use the Smart Card HttpModule in the web.config file.
3. Configure IIS to support Smart Cards
4. Create the Smart Card Principal and Smart Card Identity objects and add the logic

Building and Installing the Smart Card HttpModule
The IHttpModule interface we need to implement is very simple. Here is the interface, as defined
by Microsoft in the .NET Framework. IHttpModule is in the System.Web namespace:

C#
interface IHttpModule
{
 // called to attach module to app events
 void Init(HttpApplication app);
 // called to clean up
 void Dispose();
}

VB.Net
Interface IHttpModule
 ' called to attach module to app events
 Sub Init(ByVal app As HttpApplication);
 ' called to clean up
 Sub Dispose()
End Interface

To get a basic HTTP Module up and functioning is incredibly trivial. There are really only three
steps involved:

1. Create a class that Implements IHttpModule

C#
public class SmartCardAuthenticationModule : IHttpModule
 public void Init(HttpApplication context)
 {
 }

 public void Dispose()
 {
 }
}

VB.Net
Public Class SmartCardAuthenticationModule
 Implements System.Web.IHttpModule

 Public Sub Init(ByVal context As System.Web.HttpApplication) _
 Implements System.Web.IHttpModule.Init
 End Sub

 Public Sub Dispose() Implements System.Web.IHttpModule.Dispose
 End Sub
End Class

2. Next wire up the events to handle in the Init() method of the class – compile it in an

assembly that you reference in your web project (or include it in your web project
directly).

Implementing Smart Card Authentication with ASP.NET

Page 5 of 25 Copyright © 2007 - J. Montgomery

C#
public void Init(HttpApplication context)
{
 context.AuthenticateRequest += new EventHandler(Me.OnAuthenticateRequest);
}

private void OnAuthenticateRequest(object sender, EventArgs e)
{
 // Here's where the work of authentication takes place.
}

VB.Net
Public Sub Init(ByVal context As System.Web.HttpApplication) _
 Implements System.Web.IHttpModule.Init

 AddHandler context.AuthenticateRequest, _
 New EventHandler(AddressOf Me.OnAuthenticateRequest)
End Sub

Private Sub OnAuthenticateRequest(ByVal source As Object, ByVal eventArgs _
 As EventArgs)
 ' Here's where the work of authentication takes place.
End Sub

3. Install the Smart Card HttpModule into your ASP.NET application using the Web.Config

and deny all anonymous users in the authorization section.

<configuration>

<system.web>
 <httpModules>

 <add name="SmartCardAuthentication"
type="SmartCardAuthentication.SmartCardAuthenticationModule,
 SmartCardAuthentication" />

 </httpModules>
 <authorization>
 <!-- Deny all Anonymous Users -->
 <deny users="?" />
 </authorization>
 </system.web>

</configuration>

Once added to the web.config, re-run the code that displays installed HTTP Modules. The
SmartCardAuthentication module should show up in the pipeline:

Implementing Smart Card Authentication with ASP.NET

Page 6 of 25 Copyright © 2007 - J. Montgomery

Figure 3 – ASPX page shows that the Smart Card module is installed.

In Figure 2, the addition of SmartCardAuthentication in the list. This is how you can tell if your
module is installed and running correctly.

Above is the most basic skeleton of code I’ll be working from, but before getting into the details of
the code, IIS must be configured to support Smart Card Authentication.

Two Important Points about IIS Configuration as it relates to Smart Cards/Client Certificates:
• If IIS is not configured to actually accept and present the Client/Smart Card Certificate (by

way of the HttpCertificate object) to ASP.NET, it is critical that the
SmartCardAuthenticationModule code deny access to anyone accessing the site – using the
principal of failing securely.

• On the flip side, if IIS is not configured to limit what Certificates are acceptable through the
Certificate Trust Lists (CTL), the web server will inappropriately grant permissions to more
users then expected. We can do some extra checks in code as well to fail securely in this
case as well.

IIS Configuration
If you have not worked with Client Certificates/Smart Cards with IIS before, then this will probably
be new information. This setup will work with IIS 5.0 (Windows Server 2000), IIS 5.1 (Windows
XP) and IIS 6.0 (Windows Server 2003). I’ve not had the opportunity to try this on Vista yet, but I
suspect the configuration options are similar, if not the same, – though care will need to be taken
in choosing the right components to install to add Client Certificate, and or Active Directory
account mapping support in IIS 7 since the installation options are incredibly modular now. If you
do not see the options for Client Certificates in IIS on Vista, you probably have not installed the
proper components.

The Web Server will need to be aware of and fully integrated into your Enterprise PKI Solution:
• The Trusted CA’s will need to be installed in the Trusted Roots Certificate Stores
• Certificate Revocation will need to be configured to work with IIS (CRL/OCSP, etc.)

Implementing Smart Card Authentication with ASP.NET

Page 7 of 25 Copyright © 2007 - J. Montgomery

o If a users’ Smart Card certificate is revoked before it expires, you need to be able to
prevent the user from accessing the web site.

o Third party CRL/OCSP solutions DO support IIS integration; check your vendor’s
documentation. It is typically as easy as selecting a checkbox in the software’s
configuration properties.

• Etc. – there are potential complexities and specific implementation details based on the PKI
deployment that are outside the scope of this article. You do need to know how your specific
implementation of PKI works, and that all the pieces are in place to provide proper
authentication to your web site.

Here are the specific steps to setup Smart Card Authentication in IIS once the Web Server has
been PKI enabled.

1. Generate an SSL Certificate Request for the Root Web Site you will PKI enable.
2. Get the Request signed by a Certificate Authority (CA), most likely you will use your

internal Root Certificate Authority (CA) or Intermediate CA.
a. If your users are strictly IntRAnet users, you can use your internal CA that you

use for PKI to Sign the Certificate
b. If your users are IntERnet Users, you will need a way to deploy your Root CA’s to

the client’s computer Certificate Store for your Root CA servers to be trusted on a
client’s computer.

3. In IIS, on the folder or Web Site you want to enable for smart card
authentication/authorization, open the properties and Click on the Directory Security Tab.

4. In the Secure Communications section, click on the “Edit” button
5. For each folder or web site requires Smart Card authentication, check the “Require

Secure Channel (SSL).
6. Under “Client Certificates”, the default option is to “Ignore Client Certificates” – for all the

sites or folders you want to accept Smart Cards, choose “Require Client Certificates”

Figure 4 – SSL/Client Certificate Settings

for Production Systems

Implementing Smart Card Authentication with ASP.NET

Page 8 of 25 Copyright © 2007 - J. Montgomery

NOTE: If you are doing this on a development system and you want to be able to use
Visual Studio.NET, you cannot “Require secure channel (SSL)” or “Require Client
Certificates” or VS.net will not be able to interact properly with the web site. Also, you
must LEAVE “Integrated Security” on as well, or you will have a similar problem.

When launching your ASP.NET web application for Debugging from Visual Studio,
manually change your URL in IE when debugging from HTTP:// to HTTPS://. As long
as “Accept Client Certificates” is checked, it will prompt you to use a client certificate
providing HTTPS:// is in the URL. Alternatively, change the Web Project settings of
the site to launch the web page with the HTTPS:// prefix in the URL.

7. There are a couple ways to map Smart Cards to Active Directory Users. Check the

“Enable client certificate mapping” option and then click Edit. On this screen you will
setup the 1–to–1 mapping. To map all Smart Cards to one Active Directory Users, setup
the Many–to–1 mappings.

NOTE: I don’t recommend the 1–to–Mapping if you have a large number of users
accessing the web site

The difficulty with the 1–to–1 mapping is you must have a copy of the client certificate
(the public portion of X509 certificate) for each user you want to map. You also need
to know the Domain Password of each user as well. If you have a large enterprise
and all the users need access, you are in for a management nightmare. If someone
has other suggestions for easily managing this, please let me know.

A Many–to–1 Mapping has more promise since you can map a portion of Smart
Cards based on Wildcard Rules using fields in the X509 Certificate Distinguished
Name to one AD User Account. This allows different sets of users to be mapped to
related AD Accounts based on role, essentially allowing Role based authorization
with Windows Principals.

If you haven’t realized this yet, if you are able to do 1–to–Many Mapping or 1–to–1
Mapping, there is no need for this HttpModule as you can move over to the built in
Windows Authentication model in ASP.NET and apply Principal Permissions based
on Groups in Active Directory.

8. Check the “Enable certificate trust list” and create a new IIS CTL. Trust only the CA’s

that have Signed the Smart Card certificates that users will be using to authentication
with.

NOTE: This option is a Web Site setting. You will not see “Enable certificate trust
list” option setting for each Virtual Folder.

Implementing Smart Card Authentication with ASP.NET

Page 9 of 25 Copyright © 2007 - J. Montgomery

Figure 5 – Example of setting Certificate Trust Lists for Web Site.

In the above screen, “Require SSL and Require Client Certificates” are not selected because we

set it on a folder by folder basis. You could set them here to apply it to the entire Web Site
depending on your requirements.

IMPORTANT: If you include any other Certificate Authorities other then the ones
who signed your Smart Card Certificates (like Verisign’s CA’s, or others) any
user could purchase a client Certificate from Verisign and present it as a Client
Certificate to your web site and you would let them in!!

9. Finally, make sure you have enabled Anonymous Access to this web site in Directory

Security. Otherwise users will be presented with a system or domain logon prompt as
well as the Client Certificate dialog box.

IHttpModule Implementation
Once IIS is configured properly and you have the skeleton of the IHttpModule built, development
of the custom IHttpModule can commence.

Here’s an overview of the logic used to authenticate users:
1. When a user browses the web site, the Smart Card HttpModule will authenticate the Smart

Cards against a database of users.
a. If users have a smart card validated by IIS and:

i. They ARE IN the Database; authenticate and authorize them with their roles
in the Database (i.e. a small set of users that are Administrators, Moderators,
Content Managers, etc.)

ii. They ARE NOT IN the Database; we authenticate them in the default ‘Users’
role (i.e. the mass of users who typically have read only access or have
limited privileges)

b. If a smart card isn’t authenticated by IIS, give the user a 401.1 access denied page.

Implementing Smart Card Authentication with ASP.NET

Page 10 of 25 Copyright © 2007 - J. Montgomery

2. Create a strongly typed Smart Card Identity object based on the smart card.
3. Create a strongly typed Smart Card Principal object and assign it the Identity object.
4. Attach the Smart Card Principal to the HttpContext, by assigning it to the HttpContext.User

property that is available application wide.

SmartCardAuthenticationModule
Implementation
SmartCardAuthenticationModule – Inherits from
System.Web.IHttpModule

The SmartCardAuthenticationModule class is the
HttpModule that handles the authentication. Its raison
de’être is to create an Identity and Principal and attach it to
the HttpContext classes User property. Once a principal is
attached to the HttpContext object, authorization using that
principal will be performed, otherwise if the HttpContext.User
property is null, the user is considered unauthenticated and
is thus denied by the following authorization setting in the
web.config:

<authorization>
 <deny users="?" />
</authorization>

An additional feature of the SmartCardAuthenticationModule is the Authenticate Event. This
event is automatically wired up by ASP.NET to a method in the Global.asax file called
SmartCardAuthentication_Authenticate like so:

In the Global.asax, custom code can override the default behavior of how the Principal and
Identity is resolved and assigned to the HttpContext.User object. You can create and add your
own SmartCard Principal/Identity that is resolved perhaps through an already defined database,
or another technology. To override the default Principal and Identity objects, code within this
method must set either the e.Context.User or the e.User property of the
SmartCardAuthenticationEventArgs class.

Next follows the SmartCardAuthenticationModule implementation:

Public Class Global
 Inherits System.Web.HttpApplication
 ' OPTIONAL CODE TO OVERRIDE DEFAULT SMARTCARD HTTP MODULE BEHAVIOR
 Sub SmartCardAuthentication_Authenticate(ByVal sender As Object, _
 ByVal e As SmartCardAuthenticationEventArgs)

 ' Obviously you'd need to load an actual certificate on the next line,
 ' not a byte array with {0,0,0} in it, but an actual X509 certificate
 Dim customC509Certificate As New X509Certificate(New Byte() {0, 0, 0})

 Dim smartCardIdentity As New SmartCardIdentity(customC509Certificate, True)
 Dim smartPrincipal As New SmartCardPrincipal(smartCardIdentity)

 ' Now set either User property of the HttpContext or the
 ' EventArgs User property
 e.Context.User = smartPrincipal
 ' OR
 e.User = smartPrincipal
 End Sub
End Class

Implementing Smart Card Authentication with ASP.NET

Page 11 of 25 Copyright © 2007 - J. Montgomery

C#
using System;
using System.Security.Cryptography.X509Certificates;
using System.Security.Permissions;
using System.Security.Principal;
using System.Web;

namespace SmartCardAuthentication
{
 public delegate void SmartCardAuthenticationEventHandler(object sender,
 SmartCardAuthenticationEventArgs e);

 public sealed class SmartCardAuthenticationModule :
 System.Web.IHttpModule
 {
 public event SmartCardAuthenticationEventHandler Authenticate;

 public SmartCardAuthenticationModule() { }

 public void Dispose() { }

 public void Init(System.Web.HttpApplication context)
 {
 context.AuthenticateRequest +=
 new EventHandler(new EventHandler(this.OnAuthenticateRequest));
 }

 private void OnAuthenticateRequest(object source, EventArgs eventArgs)
 {
 HttpApplication httpApp = (HttpApplication)source;
 HttpContext context = httpApp.Context;
 SmartCardIdentity smartCardIdentity = this.RetrieveIdentity(context);

 this.OnAuthenticate(
 new SmartCardAuthenticationEventArgs(smartCardIdentity, context)
);
 }

 private void OnAuthenticate(SmartCardAuthenticationEventArgs e)
 {
 if (this.Authenticate != null)
 {
 // Fire any subscribers to the Authenticate event,
 // typically from Global.asax Smart
 this.Authenticate(this, e);
 }

 // Has Context.User already been assigned
 // from the Authenticate() event above?
 if (e.Context.User == null)
 {
 // Context.User not populated

 // Did e.User get assigned from
 // from the Authenticate() event above?
 if (e.User != null)
 {
 // Yes, assign the user and exit.
 e.Context.User = e.User;
 }
 else if (e.Identity != null)
 {
 // No, but Identity isn't null from DB Call.
 // User is authenticated, attach principal to HttpContext
 e.Context.User = new SmartCardPrincipal(e.Identity);
 }
 else
 {
 // User isn't authenticated
 this.Display401Page(e);
 e.Context.User = null;

Implementing Smart Card Authentication with ASP.NET

Page 12 of 25 Copyright © 2007 - J. Montgomery

 }
 }
 }

 private SmartCardIdentity RetrieveIdentity(HttpContext context)
 {
 SmartCardIdentity identity = null;
 // Validate X509 Certificate
 if (CryptoUtility.IsHttpCertificateValid(context.Request.ClientCertificate))
 {
 // Valid SmartCard, Create the SmartCardIdentity
 identity = new SmartCardIdentity(context.Request.ClientCertificate);
 }
 else
 {
 // No Smart Card, or invalid SmartCard
 // Set the identity to null so they aren't authenticated
 identity = null;
 }
 return identity;
 }

 private void Display401Page(SmartCardAuthenticationEventArgs e)
 {
 string pageName = Configuration.UnauthorizedPage;
 if (pageName.Equals(string.Empty))
 {
 this.WriteErrorPageToResponseStream(e.Context.Response,
 "<html><body><h1>Unauthorized!</h1></body></html>");
 }
 else
 {
 this.WriteErroFileToResponseStream(e.Context.Response,
 Configuration.UnauthorizedPage);
 }
 // finally, bypass all further modules in the HTTP pipeline chain
 // of execution and directly execute the EndRequest event
 e.Context.ApplicationInstance.CompleteRequest();
 }

 private void WriteErrorPageToResponseStream(HttpResponse response,
 string pageContent)
 {
 response.StatusCode = 401;
 response.StatusDescription = "You are not authorized to access this site.";
 response.ContentType = "text/html";
 response.Write(pageContent);
 response.Flush();
 response.End();
 }

 private void WriteErroFileToResponseStream(HttpResponse response, string pageName)
 {
 response.StatusCode = 401;
 response.StatusDescription = "You are not authorized to access this site.";
 response.ContentType = "text/html";
 response.WriteFile(pageName);
 response.Flush();
 response.End();
 }
 }
}

Implementing Smart Card Authentication with ASP.NET

Page 13 of 25 Copyright © 2007 - J. Montgomery

VB.Net
Imports System.Security.Cryptography.X509Certificates
Imports System.Security.Permissions
Imports System.Security.Principal
Imports System.Web

Public NotInheritable Class SmartCardAuthenticationModule
 Implements System.Web.IHttpModule

 ' Events
 Public Event Authenticate(ByVal sender As Object, _
 ByVal e As SmartCardAuthenticationEventArgs)

 Public Sub New()
 End Sub

 Public Sub Dispose() Implements System.Web.IHttpModule.Dispose

 End Sub

 Public Sub Init(ByVal context As System.Web.HttpApplication) _
 Implements System.Web.IHttpModule.Init

 AddHandler context.AuthenticateRequest, _
 New EventHandler(AddressOf Me.OnAuthenticateRequest)
 End Sub

 Private Sub OnAuthenticateRequest(ByVal source As Object, ByVal eventArgs As EventArgs)
 Dim httpApp As HttpApplication = DirectCast(source, HttpApplication)
 Dim context As HttpContext = httpApp.Context

 Dim smartCardIdentity As SmartCardIdentity = Me.RetrieveIdentity(context)
 Me.OnAuthenticate(New SmartCardAuthenticationEventArgs(smartCardIdentity, context))
 End Sub

 Private Sub OnAuthenticate(ByVal e As SmartCardAuthenticationEventArgs)
 ' Fire any subscribers to the Authenticate event,

‘ typically from Global.asax Smart
 RaiseEvent Authenticate(Me, e)

 ' Has Context.User already been assigned
 ' from the Authenticate() event above?
 If (e.Context.User Is Nothing) Then
 ' Context.User not populated

 ' Did e.User get assigned from
 ' from the Authenticate() event above?
 If (Not e.User Is Nothing) Then
 ' Yes, assign the user and exit.
 e.Context.User = e.User
 ElseIf Not e.Identity Is Nothing Then
 ' No, but Identity isn't null from Database Call.
 ' User is authenticated
 e.Context.User = New SmartCardPrincipal(e.Identity)
 Else
 ' User isn't authenticated
 Me.Display401Page(e)
 e.Context.User = Nothing
 End If
 End If
 End Sub

 Private Function RetrieveIdentity(ByVal context As HttpContext) As SmartCardIdentity
 Dim identity As SmartCardIdentity = Nothing

 ' Validate X509 Certificate
 If CryptoUtility.IsHttpCertificateValid(context.Request.ClientCertificate) Then
 ' Valid SmartCard, Create the SmartCardIdentity
 identity = New SmartCardIdentity(context.Request.ClientCertificate)
 Else
 ' No Smart Card/Invalid SmartCard

Implementing Smart Card Authentication with ASP.NET

Page 14 of 25 Copyright © 2007 - J. Montgomery

 ' Set the identity to null so they aren't authenticated
 identity = Nothing
 End If

 Return identity
 End Function

 Private Sub Display401Page(ByVal e As SmartCardAuthenticationEventArgs)
 Dim pageName As String = Configuration.UnauthorizedPage
 ' Now dump the Unauthorized Page
 If pageName.Equals(String.Empty) Then
 Me.WriteErrorPageToResponseStream(e.Context.Response, _
 "<html><body><h1>Unauthorized!</h1></body></html>")
 Else
 Me.WriteErroFileToResponseStream(e.Context.Response, _
 Configuration.UnauthorizedPage)
 End If

 ' finally, bypass all further modules in the HTTP pipeline chain of execution
 ' and directly execute the EndRequest event
 e.Context.ApplicationInstance.CompleteRequest()
 End Sub

 Private Sub WriteErrorPageToResponseStream(ByVal response As HttpResponse, _
 ByVal pageContent As String)
 response.StatusCode = 401
 response.StatusDescription = "You are not authorized to access this site."
 response.ContentType = "text/html"
 response.Write(pageContent)
 response.Flush()
 response.End()
 End Sub

 Private Sub WriteErroFileToResponseStream(ByVal response As HttpResponse, _
 ByVal pageName As String)
 response.StatusCode = 401
 response.StatusDescription = "You are not authorized to access this site."
 response.ContentType = "text/html"
 response.WriteFile(pageName)
 response.Flush()
 response.End()
 End Sub
End Class

SmartCardAuthenticationEventArgs Implementation
SmartCardAuthenticationEventArgs Class – Inherits from System.EventArgs

The SmartCardAuthenticationEventArgs is a class used to pass references around of the
HttpContext, User (Principal), and Identity objects to events that are subscribed to the
Authenticate event of the SmartCardAuthenticationModule.

C#
using System;
using System.Web;
using System.Security.Principal;
using System.Security.Permissions;
using System.Security.Cryptography.X509Certificates;

namespace SmartCardAuthentication
{
 public sealed class SmartCardAuthenticationEventArgs : EventArgs
 {
 private HttpContext _context;
 private SmartCardIdentity _identity;
 private IPrincipal _user;

Implementing Smart Card Authentication with ASP.NET

Page 15 of 25 Copyright © 2007 - J. Montgomery

 public SmartCardAuthenticationEventArgs(SmartCardIdentity identity,
 HttpContext context)
 {
 this._identity = identity;
 this._context = context;
 }

 public HttpContext Context
 {
 get { return this._context; }
 }

 public SmartCardIdentity Identity
 {
 get { return this._identity; }
 }

 public IPrincipal User
 {
 get { return this._user; }
 set
 {
 // Make sure up-stack callers have permission to change the principal.
 SecurityPermission controlPrincipalPermission =
 new SecurityPermission(SecurityPermissionFlag.ControlPrincipal);
 controlPrincipalPermission.Demand();

 this._user = value;
 }
 }
 }
}

VB.Net
Imports System.Web
Imports System.Security.Principal
Imports System.Security.Permissions
Imports System.Security.Cryptography.X509Certificates

Public NotInheritable Class SmartCardAuthenticationEventArgs
 Inherits EventArgs

 Private _context As HttpContext
 Private _identity As SmartCardIdentity
 Private _user As IPrincipal

 Public ReadOnly Property Context() As HttpContext
 Get
 Return Me._context
 End Get
 End Property

 Public ReadOnly Property Identity() As SmartCardIdentity
 Get
 Return Me._identity
 End Get
 End Property

 Public Property User() As IPrincipal
 Get
 Return Me._user
 End Get
 Set(ByVal Value As IPrincipal)
 ' Make sure upstream callers have permission to change the principal.
 Dim controlPrincipalPermission As _
 New SecurityPermission(SecurityPermissionFlag.ControlPrincipal)
 controlPrincipalPermission.Demand()

SmartCardAuthenticationEventArgs

EventArgs
Sealed Class

Fields

_Context
_Identity
_User

Properties

Context
Identity
User

Methods

SmartCardAuthenticationEventArgs

Implementing Smart Card Authentication with ASP.NET

Page 16 of 25 Copyright © 2007 - J. Montgomery

SmartCardIdentity
Class

Fields

_certificate
_email
_publicKeyHash
_subject

Properties

AuthenticationType
Certificate
EmailAddress
ExpirationDate
IsAuthenticated
Name
PublicKeyHash
Subject

Methods

SmartCardIdentity (+ 2 overloads)

IIdentity

 Me._user = Value
 End Set
 End Property

 Public Sub New(ByVal identity As SmartCardIdentity, ByVal context As HttpContext)
 Me._identity = identity
 Me._context = context
 End Sub
End Class

SmartCardIdentity Implementation
SmartCardIdentity Class – Inherits from System.Security.Principal.IIdentity

The IIdentity Interface defines the basic functionality of an identity and is used to encapsulate
information about the user or entity being validated (MSDN Documentation).

This object will hold the state of the current User’s Identity using information retrieved from the
Smart Card.

C#
using System;
using System.Web;
using System.Security.Cryptography.X509Certificates;
using System.Security.Principal;

namespace SmartCardAuthentication
{
 public class SmartCardIdentity : IIdentity
 {
 private string _subject;
 private string _email;
 private string _publicKeyHash;
 private X509Certificate _certificate;

 public string AuthenticationType
 {
 get { return "SmartCard"; }
 }

 public bool IsAuthenticated
 {
 get { return true; }
 }

 public string Name
 {
 get { return _subject; }
 }

 public string PublicKeyHash
 {
 get { return _publicKeyHash; }
 }

 public string EmailAddress
 {
 get { return this._email; }
 set { this._email = value; }
 }
 public X509Certificate Certificate
 {
 get { return this._certificate; }
 }

Implementing Smart Card Authentication with ASP.NET

Page 17 of 25 Copyright © 2007 - J. Montgomery

 public DateTime ExpirationDate
 {
 get
 {
 return DateTime.Parse(
 this._certificate.GetExpirationDateString()
);
 }
 }

 public string Subject
 {
 get { return this._subject; }
 }

 public SmartCardIdentity(HttpClientCertificate certificate)
 {
 this._certificate = new X509Certificate(certificate.Certificate);
 this._publicKeyHash = CryptoUtility.GetPublicKeyHash(certificate);
 this._subject = certificate.Subject;
 }

 public SmartCardIdentity(X509Certificate certificate)
 {
 this._certificate = certificate;
 this._publicKeyHash = CryptoUtility.GetPublicKeyHash(certificate);
 this._subject = certificate.GetName();
 }
 }
}

VB.Net
Imports System.Web
Imports System.Security.Cryptography.X509Certificates
Imports System.Security.Principal

Public Class SmartCardIdentity
 Implements IIdentity

 Private _subject As String
 Private _email As String
 Private _publicKeyHash As String
 Private _certificate As X509Certificate

 Public ReadOnly Property PublicKeyHash() As String
 Get
 Return _publicKeyHash
 End Get
 End Property

 Public ReadOnly Property AuthenticationType() As String _

 Implements IIdentity.AuthenticationType
 Get
 Return "SmartCard"
 End Get
 End Property

 Public ReadOnly Property IsAuthenticated() As Boolean _

Implements IIdentity.IsAuthenticated
 Get
 ' The fact that this identity object exists means that
 ' the user was Authenticated
 Return True
 End Get
 End Property

 Public ReadOnly Property Name() As String _

Implements IIdentity.Name
 Get
 Return _subject

Implementing Smart Card Authentication with ASP.NET

Page 18 of 25 Copyright © 2007 - J. Montgomery

SmartCardPrincipal Implementation
The SmartCardPrincipal Class – Inherits from System.Security.Principal.IPrincipal

From the MSDN documentation, a principal object represents the security context of the user on
whose behalf the code is running, including that user's identity (IIdentity) and any roles to which
they belong. The Principal is the object that gets interrogated when a PrincipalPermission
Demand is made to make sure it is in the proper role to perform the requested operation.

When SmartCardPrincipal.IsInRole() is called, our Smart Card aware object will return whether or
not the Principal is in the requested role. On first run, this class will populate a Hashtable with the
roles for the current user from the database. The key to lookup the Users’ Roles in the database
will be a SHA256 hash of the Users’ public key.

Also notice that both IsElevatedUser and IsInRole() is virtual/Overridable – This allows for custom
role resolution if you have a different methodology to resolve roles other then database role
resolution provided.

C#
using System;
using System.Configuration;
using System.Web;

 End Get
 End Property

 Public Property EmailAddress() As String
 Get
 Return Me._email
 End Get
 Set(ByVal Value As String)
 Me._email = Value
 End Set
 End Property

 Public ReadOnly Property Certificate() As X509Certificate
 Get
 Return Me._certificate
 End Get
 End Property

 Public ReadOnly Property ExpirationDate() As DateTime
 Get
 Return DateTime.Parse(Me._certificate.GetExpirationDateString())
 End Get
 End Property

 Public ReadOnly Property Subject() As String
 Get
 Return Me._subject
 End Get
 End Property

 Public Sub New(ByVal certificate As HttpClientCertificate)
 Me._certificate = New X509Certificate(certificate.Certificate)
 Me._publicKeyHash = CryptoUtility.GetPublicKeyHash(certificate)
 Me._subject = certificate.Subject
 End Sub

 Public Sub New(ByVal certificate As X509Certificate)
 Me._certificate = certificate
 Me._publicKeyHash = CryptoUtility.GetPublicKeyHash(certificate)
 Me._subject = certificate.GetName()
 End Sub

End Class

Implementing Smart Card Authentication with ASP.NET

Page 19 of 25 Copyright © 2007 - J. Montgomery

using System.Web.Security;
using System.Collections;
using System.Security.Principal;

namespace SmartCardAuthentication
{
 public class SmartCardPrincipal : IPrincipal
 {
 private SmartCardIdentity _identity;
 private Hashtable _roles;
 private bool _isElevatedUser;
 private bool _rolesLoaded;
 private bool _isElevatedLoaded;

 public IIdentity Identity
 {
 get
 {
 return this._identity;
 }
 }

 public SmartCardPrincipal(SmartCardIdentity identity)
 {
 this._identity = identity;
 this._rolesLoaded = false;
 this._isElevatedLoaded = false;
 }

 public virtual bool IsElevatedUser
 {
 get {
 if (!_isElevatedLoaded)
 {
 lock (this)
 {
 // Evaluate the user against the database
 // to see if they have an elevated account
 DataAccess dAccess = new DataAccess();
 this._isElevatedUser =
 dAccess.AuthenticateUser(_identity.PublicKeyHash);
 }
 this._isElevatedLoaded = true;
 }
 return this._isElevatedUser;
 }
 }

 public virtual bool IsInRole(string role)
 {
 if (!_rolesLoaded)
 {
 lock (this)
 {
 if (this.IsElevatedUser)
 {
 DataAccess dAccess = new DataAccess();
 _roles = dAccess.GetPrincipalRoles(_identity.PublicKeyHash);
 _roles.Add("User", "User");
 }
 else
 {
 _roles = new Hashtable(1);
 _roles.Add("User", "User");
 }
 _rolesLoaded = true;
 }
 }
 return _roles.Contains(role);
 }

SmartCardPrincipal
Class

Fields

_identity
_isElevatedUser
_isElevatedUserLoaded
_roles
_rolesLoaded

Properties

Identity
IsElevatedUser

Methods

IsInRole
SmartCardPrincipal

IPrincipal

Implementing Smart Card Authentication with ASP.NET

Page 20 of 25 Copyright © 2007 - J. Montgomery

 }
}

VB.Net
Imports System.Configuration
Imports System.Web
Imports System.Web.Security
Imports System.Collections
Imports System.Security.Principal

Public Class SmartCardPrincipal
 Implements IPrincipal

 Private _identity As SmartCardIdentity
 Private _roles As Hashtable
 Private _rolesLoaded As Boolean
 Private _isElevatedLoaded As Boolean

 Public ReadOnly Property Identity() As IIdentity _

Implements IPrincipal.Identity
 Get
 Return Me._identity
 End Get
 End Property

 Public Sub New(_
 ByVal identity As SmartCardIdentity _
)
 Me._identity = identity
 Me._rolesLoaded = False
 Me._isElevatedLoaded = False
 End Sub

 Public Overridable ReadOnly Property IsElevatedUser() As Boolean
 Get
 If (Not _isElevatedLoaded) Then
 SyncLock (Me)
 ' Authenticate the user against the database
 Dim dAccess As New DataAccess
 _isElevatedUser = dAccess.AuthenticateUser(Me._identity.PublicKeyHash)

 _isElevatedLoaded = True
 End SyncLock
 End If

 Return _isElevatedUser
 End Get
 End Property

 Public Overridable Function IsInRole(ByVal role As String) As Boolean _

Implements IPrincipal.IsInRole
 If (Not _rolesLoaded) Then
 SyncLock (Me)
 If _identity.IsElevatedUser Then
 ' If the user is elevated, retrieve roles from the database
 Dim dAccess As New DataAccess
 _roles = dAccess.GetPrincipalRoles(_identity.PublicKeyHash)
 ' Finally add the Default Role
 _roles.Add("User", "User")
 Else
 _roles = New Hashtable(1)
 ' Regular user
 _roles.Add("User", "User")
 End If
 _rolesLoaded = True
 End SyncLock
 End If

 Return _roles.Contains(role)
 End Function
End Class

Implementing Smart Card Authentication with ASP.NET

Page 21 of 25 Copyright © 2007 - J. Montgomery

Additional Implementation Details
There are several more classes involved in this implementation, but they go beyond the scope of
the HttpModule. If you download the sample code, you can take a look at them. They are barely
implemented so I’d recommend you use them at your own risk.

The Configuration Class
The Configuration class resolves some things like 401 error page, the database connection
string, and the database connection timeout. The class had the following structure:

Configuration
Class

Properties

ConnectionString
ConnectionTimeout
UnauthorizedPage

These values are retrieved from the web.config file:

The DataAccess Class
The DataAccess class had some methods for quickly retrieving data from the database.

DataAccess
Class

Fields

_commandTimeout
_connectionString
_continueOnError

Methods

AuthenticateUser
DataAccess
ExecuteCommand
GetPrincipalRoles
RunCommand (+ 3 overloads)

The CryptoUtility Class

<configuration>
 <system.web>

 …
 </system.web>
 <appSettings>
 <add key="SmartCardAuthentication_UnauthorizedPage"
 value="C:\WINNT\help\iisHelp\common\401-1.htm"/>
 <add key="SmartCardAuthentication_ConnectionString"
 value="integrated security=SSPI;data source=Server;initial catalog=Database"/>
 <add key="SmartCardAuthentication_ConnectionTimeout"
 value="180" />
 </appSettings>
</configuration>

Implementing Smart Card Authentication with ASP.NET

Page 22 of 25 Copyright © 2007 - J. Montgomery

This class performed operations (hash compare, BinToHex() / HexToBin() conversions, etc.) on
the X509 certificates. It also generates the Public Key hash used to retrieve users out of the
database, and validates some simple properties on the X509 certificate for an internal sanity
check. IIS should already be catching these problems before it gets to our code, but it can’t hurt
to check again.

CryptoUtility
Class

Methods

BinToHex
CompareByteArrays
GetPublicKeyHash (+ 2 overloads)
HashData
HexToBin
IsCertificateHashValid
IsCertificateSelfValidated
IsHttpCertificateValid

Some Final Tests
Once you have the SmartCardAuthenticationModule code up and running, a simple way to test it
is as follows:

C#
private void Page_Load(object sender, EventArgs e)
{
 SmartCardIdentity smartCardIdentity = (SmartCardIdentity)Me.User.Identity;
 SmartCardPrincipal smartCardPrincipal = (SmartCardPrincipal)Me.User;

 Response.Write("Name: " + smartCardIdentity.Name + "
");
 Response.Write("Is Authenticated: " + smartCardIdentity.IsAuthenticated + "
");
 Response.Write("Authentication Type: " + smartCardIdentity.AuthenticationType + "
");
 Response.Write("Elevated User: " & SmartCardPrincipal.IsElevatedUser + "
");
 Response.Write("Is in role Administrator: " + this.User.IsInRole("Administrator"));
}

VB.Net
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles MyBase.Load

 Dim smartCardIdentity As SmartCardIdentity = DirectCast(Me.User.Identity,
SmartCardIdentity)
 Dim smartCardPrincipal As SmartCardPrincipal = DirectCast (Me.User, SmartCardPrincipal)

 Response.Write("Name: " & smartCardIdentity.Name & "
")
 Response.Write("Is Authenticated: " & smartCardIdentity.IsAuthenticated & "
")
 Response.Write("Authentication Type: " & smartCardIdentity.AuthenticationType & "
")
 Response.Write("Elevated User: " & SmartCardPrincipal.IsElevatedUser & "
")
 Response.Write("Is in role Administrator: " & Me.User.IsInRole("Administrator"))
End Sub

Implementing Authorization in ASP.NET
Once you have your SmartCardPrincipal setup, there are several ways to implement
authorization with the IPrincipal using Code Access Security (CAS) for authorization within
ASP.NET.

Implementing Smart Card Authentication with ASP.NET

Page 23 of 25 Copyright © 2007 - J. Montgomery

We can configure Role base authorization using the web.config file, using PrincipalPermission
Demands, or IPrincipal.IsInRole() checks in code.

• Declarative

Principal Permissions can be used to decorate methods that will demand upstream callers in
the stack have a particular Role.

C#
using System.Security.Permissions;

 …
 [PrincipalPermission(SecurityAction.Demand, Role="Administrator"),
 PrincipalPermission(SecurityAction.Demand, Role="Auditors")]
 public void DoSomethingImportant()
 {
 }

VB.Net
Imports System.Security.Permissions
 ...
 <PrincipalPermission(SecurityAction.Demand, Role:=”Administrator”), _
 PrincipalPermission(SecurityAction.Demand, Role:=”Auditors”)> _
 Public Sub DoSomethingImportant()
 End Sub

• Imperative

Principal Permissions can be used to make demands programmatically to upstream callers in
the stack have a particular Role.

C#
using System.Security.Permissions;

…
public void DoSomethingImportant()
{
 PrincipalPermission permCheck = new PrincipalPermission(Nothing, "Administrators");
 permCheck.Demand();
}

VB.Net
Imports System.Security.Permissions
...
Public Sub DoSomethingImportant()
 Dim permCheck As New PrincipalPermission(Nothing, "Administrators")
 permCheck.Demand()
End Sub

• IPrincipal.IsInRole() Check

We can check if the IPrincipal is in the role we require (which is exactly what the
PrincipalPermission class does by using the IPrincipal stored in the Thread.CurrentPrincipal):

C#
if (myPrincipal.IsInRole(“Administrators”)
{
 ...
}

VB.Net
If myPrincipal.IsInRole(“Administrators”) Then
 ...
End If

Implementing Smart Card Authentication with ASP.NET

Page 24 of 25 Copyright © 2007 - J. Montgomery

• Web.Config

To allow all Administrators and deny everyone else to a folder called ‘Admin’, and to allow
only Auditors into a folder called ‘Reports’, we’d add the following to the web.config

Specify access permissions to files and/or folders in the web.config:

<configuration>
 <system.web>
 ...
 </system.web>
 <location path="Admin">
 <system.web>
 <authorization>
 <allow roles="Administrator" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
 <location path="Reports">
 <system.web>
 <authorization>
 <allow roles="Auditor" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

Conclusion
ASP.NET provides a powerful, yet simple way to implement custom authentication functionality in
the HTTP Pipeline using HTTP Modules. IIS also has robust support for Client Certificates and
when combined, Http Modules in ASP.NET and IIS make a great platform for developing sites
that need to use Smart Cards for authentication and authorization.

Implementing Smart Card Authentication with ASP.NET

Page 25 of 25 Copyright © 2007 - J. Montgomery

Appendix A – Further Reading

1. http://support.microsoft.com/kb/307985

INFO: ASP.NET HTTP Modules and HTTP Handlers Overview
This article introduces the ASP.NET HTTP modules and HTTP handlers

2. http://msdn.microsoft.com/msdnmag/issues/02/09/HTTPPipelines/

This article introduces the architecture of the pipeline and shows how you can use it to add
sophisticated functionality to an ASP.NET-based app.

3. http://msdn.microsoft.com/msdnmag/issues/02/05/asp/default.aspx

A (brief) look at HTTP modules in ASP.NET.

4. http://support.microsoft.com/kb/887289

HTTP module to check for canonicalization issues with ASP.NET
To aid customers in protecting their ASP.NET applications, Microsoft has made available an
HTTP module that implements canonicalization best practices.

5. http://msdn2.microsoft.com/en-us/library/aa479332.aspx

Using HTTP Modules and Handlers to Create Pluggable ASP.NET Components

In this article, Scott Mitchell and Atif Aziz show how you can use HTTP modules and handlers
to add error logging to your ASP.NET applications. (22 printed pages)

6. http://msdn2.microsoft.com/en-us/library/ms972974.aspx

URL Rewriting in ASP.NET (using HTTP Handlers)

Examines how to perform dynamic URL rewriting with Microsoft ASP.NET. URL rewriting is
the process of intercepting an incoming Web request and automatically redirecting it to a
different URL. Discusses the various techniques for implementing URL rewriting, and
examines real-world scenarios of URL rewriting. (31 printed pages)

7. http://support.microsoft.com/kb/313070
HOW TO: Configure Client Certificate Mappings in Internet Information Services (IIS) 5.0

8. http://support.microsoft.com/kb/272175/EN-US/

HOW TO: Configure Active Directory Certificate Mapping

9. http://support.microsoft.com/kb/216906/EN-US/
Comparing IIS 5.0 Certificate Mapping and Native Windows 2000 Active Directory Certificate
Mapping

10. http://www.google.com/microsoft?q=HTTP+modules+&hq=microsoft&btnG=Google+Search
Search Google for more!

Disclaimer
There is no warranty expressed, written, or implied for any code or methodology presented in this
document. It is for informational purposes only.

